
Efficient Fault Localization in Software Testing Using Squeeze BERT, Wavelet CNN,

and Adaptive Memory Networks

1 Nagendra Kumar Musham

Celer Systems Inc, California, USA

nagendramusham9@gmail.com

2Sathiyendran Ganesan

Troy, Michigan, USA

sathiyendranganesan87@gmail.com

3Venkata Sivakumar Musam

Astute Solutions LLC, California, USA

venkatasivakumarmusam@gmail.com

4G. Arulkumaran

School of C&IT, REVA University, Bangalore, India

erarulkumaran@gmail.com

Abstract

Fault localization is a crucial task in software testing, significantly impacting debugging efficiency and software

reliability. Traditional approaches, such as spectrum-based fault localization and statistical debugging, often

struggle with precision due to their reliance on static heuristics, leading to high false positive rates and

inefficient fault identification. These methods lack adaptability to modern, large-scale software architectures

with complex execution patterns. To address these challenges, this study proposes a hybrid deep learning model

integrating SqueezeBERT, Wavelet CNN, and Adaptive Memory Networks (AMN) for fault localization using

the Defects4J dataset. The novelty of this approach lies in leveraging transformer-based log tokenization

(SqueezeBERT), frequency-domain fault pattern extraction (Wavelet CNN), and historical pattern retrieval

(AMN) to enhance fault detection accuracy and computational efficiency. Experimental results demonstrate

98% fault localization accuracy, 93% error reduction, and 88% execution time reduction, outperforming

Advanced Genetic Algorithms (AGA) in scalability, efficiency (92% vs. 85%), and computational overhead

(60% vs. 70%). Compared to conventional spectrum-based techniques, the proposed method significantly

reduces false positives (FPR) and improves recall (FDR), ensuring robust fault detection across diverse

execution logs. By integrating memory-based retrieval with deep learning, the model adapts dynamically to

evolving software systems, making it a scalable and computationally efficient solution for real-world fault

localization. This advancement enhances debugging precision, minimizes developer effort, and paves the way

for future reinforcement learning-based adaptive fault localization techniques in complex software ecosystems.

Keywords: Fault Localization, Squeeze Bidirectional Encoder Representations from Transformers, Wavelet

Convolutional Neural Network, Adaptive Memory Networks, Software Testing, Advanced Genetic Algorithms

1. Introduction

Effective fault localization is essential for reducing debugging time and improving software reliability [1].

However, achieving high accuracy in large-scale, evolving software systems remains a major challenge [2]. As

modern software architectures become increasingly complex with interconnected dependencies, concurrent

execution, and distributed frameworks, traditional fault localization techniques struggle to maintain precision

and efficiency [3]. The need for automated debugging across diverse execution environments requires adaptive

and scalable solutions that can enhance fault detection accuracy and reliability [4]. Despite advancements,

existing methods often suffer from imprecision, high debugging costs, and an inability to handle dynamic

software structures, limiting their practical utility [5]. A key limitation of conventional fault localization

techniques is their dependence on static analysis, program spectra, and heuristic-based ranking, which fail to

adapt to continuous software modifications [6]. These approaches often demand significant manual intervention

and domain expertise, making them inefficient for large-scale projects with frequent updates [7]. Additionally,

conventional methods struggle to accommodate runtime variations and dynamic execution traces, reducing their

applicability in modern, adaptive software environments [8]. Without intelligent mechanisms to adjust to

evolving software behaviors, traditional fault localization methods quickly become outdated and ineffective [9].

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 04, Apr, 2024

ISSN No: 2250-3676 www.ijesat.com Page 254 of 265

mailto:nagendramusham9@gmail.com
mailto:sathiyendranganesan87@gmail.com
mailto:venkatasivakumarmusam@gmail.com
mailto:erarulkumaran@gmail.com

Another significant challenge is computational inefficiency [10]. Many AI-driven fault localization techniques

require substantial computational resources, including high memory usage and prolonged inference times,

making them unsuitable for debugging, embedded systems, and cloud-based applications [11]. To address these

issues, fault localization models must be designed to be both lightweight and computationally efficient, ensuring

seamless integration into contemporary software development workflows [12]. The lack of transparency in AI-

based fault localization models presents an additional obstacle [13] . Most existing models operate as black-box

systems, providing minimal insight into how faults are detected and ranked [14]. This lack of interpretability is a

major concern in domains where explainability is critical, such as financial systems, cybersecurity, and

healthcare, where debugging decisions must be auditable and verifiable [15]. To enhance trust and usability,

fault localization models must incorporate explainability techniques that allow developers to understand and

validate fault predictions [16].

Modern software paradigms, including microservices, event-driven applications, and distributed computing,

introduce further complications for fault localization [17]. Traditional debugging approaches often fail to scale

efficiently across these architectures, leading to ineffective fault prioritization and increased developer workload

[18]. Additionally, the presence of asynchronous execution, parallel processing, and non-deterministic

workflows results in unpredictable execution paths that existing methods struggle to analyze [19]. For fault

localization to remain effective in modern software ecosystems, next-generation debugging solutions must

dynamically adapt to evolving software environments [20]. With AI-assisted code evolution, runtime

modifications, and self-learning mechanisms becoming integral to software development, static fault

localization methods are no longer sufficient [21]. Without continuous learning and adaptation based on

execution traces, automated debugging systems risk becoming obsolete, increasing the probability of undetected

faults in complex and fast-changing applications [22].

To address the challenges of fault localization in modern software systems, we propose an adaptive approach

combining SqueezeBERT, Wavelet CNN, and Adaptive Memory Network. SqueezeBERT efficiently processes

execution logs, Wavelet CNN captures frequency-based fault patterns, and AMN stores and retrieves past

failure patterns to enhance recall and precision. This lightweight yet effective method improves fault detection

accuracy, reduces false positives, and ensures computational efficiency, making it suitable for debugging in

evolving software environments.

Main Contributions of the Proposed Method

● Enhance fault localization accuracy by leveraging SqueezeBERT for efficient log sequence processing.

● Extract frequency-based fault patterns using Wavelet CNN, reducing noise in execution logs.

● Adapts to evolving software environments through Adaptive Memory Network (AMN) for past failure

pattern retrieval.

● Optimizes computational efficiency, enabling fault detection with minimal overhead.

2. Literature Review

An adaptive AI-driven fault localization framework was proposed, utilizing a hybrid deep learning model that

combined log sequence analysis with dynamic execution tracing. This method improved fault detection

accuracy and reduced debugging time [23]. However, its dependency on high-quality logs and execution traces

may limit applicability in sparse data environments [24]. Graph-based neural networks were used for fault

prediction in large-scale software systems through graph embeddings and attention mechanisms [25]. This

approach reduced false positives significantly. Yet, the computational overhead and complexity in large,

evolving graphs posed scalability challenges [26]. A hybrid method integrated neural networks with heuristic

techniques for test case prioritization in regression testing, leading to improved fault detection rates and testing

efficiency [27]. The approach, however, required significant tuning for different testing scenarios and lacked

generalizability across domains [28].

Artificial neural networks, electrothermal inverter models, and finite element analysis were integrated for EV

traction system simulation [29]. The focus was on heat optimization and performance enhancement. However,

the computational complexity and domain specificity limited broader applicability in software testing [30]. A

lightweight CNN-based model was developed for fault identification using wavelet-transformed log features.

The model demonstrated improved pattern recognition and scalability. Nonetheless, its performance diminished

with noisy or incomplete log data [31]. An explainable AI framework for fault localization was proposed by

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 04, Apr, 2024

ISSN No: 2250-3676 www.ijesat.com Page 255 of 265

combining causal inference with neural networks, enhancing interpretability and error classification. Despite its

advantages, the model faced challenges in balancing transparency with predictive performance [32].

Pre-trained language models were integrated with evolutionary algorithms for test case generation, ensuring

semantic validity and optimized coverage [33]. The approach outperformed traditional methods but depended

heavily on fine-tuning and required extensive computational resources [34]. An attention-enhanced deep

learning model with adaptive memory was introduced for fault tracking, leveraging past execution logs [35]. It

improved recall and precision, yet the model’s effectiveness decreased in systems with limited historical log

data. AI techniques were applied in DED for 3D printing in medical applications, optimizing strength and

precision [36]. While efficiency improved, the findings were domain-specific and not directly transferable to

general software testing contexts [37].

Temporal convolutional networks were used for fault sequence analysis, capturing long-range dependencies and

improving early fault detection [38]. However, the model required extensive training data and struggled with

highly variable input patterns [39]. Meta-learning strategies were applied to software fault prediction, enabling

quick adaptation to new traces with minimal retraining [40]. Although adaptive, the approach faced issues with

stability and consistency in rapidly changing codebases. A multi-modal fault diagnosis technique combined

source code embeddings and execution logs to improve correlation analysis and robustness [41]. Still,

synchronization of multimodal data and managing high dimensionality remained challenging [42].

Self-supervised learning was used for defect prediction, reducing the need for labeled data and improving

detection of fault-prone modules [43]. However, the unsupervised nature limited precision in complex error

patterns without supplemental validation. A neuro-symbolic framework combined logical reasoning with neural

networks for fault localization, enhancing verification accuracy and interpretability [44]. The hybrid nature,

though, introduced integration challenges and required domain-specific rule definitions. Federated learning was

adopted for fault detection to maintain data privacy across distributed systems. This model ensured secure

debugging but faced limitations in synchronization, communication overhead, and model convergence [45].

Contrastive learning was employed for adaptive fault clustering, dynamically grouping similar failure patterns

and minimizing redundant tests. Despite gains in efficiency, performance was sensitive to the quality of

clustering metrics [46].

Advanced genetic algorithms were explored for optimizing test data generation and path coverage, integrating

techniques like PSO, ACO, and co-evolution [47]. The approach scaled well but suffered from high execution

time and required expert tuning. A transformer-based model was introduced for bug prediction, leveraging code

structure and execution log embeddings to enhance localization precision [48]. However, its interpretability and

training cost posed practical limitations. Bayesian optimization was integrated with deep learning for tuning

fault prediction parameters, reducing error rates and improving efficiency [49]. Nevertheless, it required

extensive evaluation runs and risked convergence to local optima. A combination of NOMA, UVFA, and

dynamic graph neural networks was used in AI-driven software for decision-making and optimization [50].

While system flexibility and speed improved, the integrated architecture was complex and required robust

infrastructure support [51]. Hybrid knowledge distillation techniques enabled compact models to retain

knowledge from complex architectures for efficient defect prediction. This approach achieved low-latency and

high accuracy but faced trade-offs in capturing deeper patterns present in the original large models [52].

3. Problem Statement

Existing AI-driven methods for software fault localization and defect prediction such as those employing CNNs,

RNNs, transformers, graph neural networks, and hybrid models have made considerable progress in improving

detection accuracy, precision, and debugging efficiency [53]. However, these approaches are often constrained

by several critical limitations [54]. Many rely heavily on large volumes of high-quality labeled data, which are

difficult to obtain in practical software development environments, especially for legacy systems or in low-

resource settings [55]. Additionally, the computational complexity of deep learning models demands significant

processing power and memory, making debugging and deployment in resource-constrained environments

challenging [56]. Generalization remains another concern, as many models perform well only within specific

software domains or architectures and fail to adapt effectively to heterogeneous or evolving codebases [57].

Although some hybrid methods and meta-learning strategies aim to enhance adaptability, they frequently require

extensive tuning and retraining, reducing their efficiency in dynamic development workflows [58]. Furthermore,

the integration of multimodal data sources such as code embeddings, execution traces, and log sequences adds

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 04, Apr, 2024

ISSN No: 2250-3676 www.ijesat.com Page 256 of 265

modeling complexity and increases dimensionality, which impacts scalability and maintainability [59]. Despite

advancements in explainable AI and neuro-symbolic reasoning, many deep learning models still operate as

black boxes, offering limited transparency and reducing developers’ trust in automated decisions [60]. Privacy-

preserving solutions like federated learning address data sharing concerns but introduce challenges related to

communication overhead, model synchronization, and convergence stability across distributed systems [61].

Overall, the current landscape lacks a unified, efficient, and interpretable framework that can deliver high

performance, adaptability, and scalability while minimizing data dependency, computational load, and

development overhead in real-world software testing scenarios [62].

4. Proposed Methodology for Fault Localization in Software Testing Using SqueezeBERT, Wavelet CNN,

and Adaptive Memory Networks

The proposed methodology leverages SqueezeBERT, Wavelet CNN, and Adaptive Memory Network (AMN)

for efficient fault localization in software testing using the Defects4J dataset. Logs are parsed and tokenized for

SqueezeBERT, transformed into frequency-domain features via Wavelet CNN, and enriched with historical

fault patterns using AMN. The integrated model enhances fault detection accuracy, reduces false positives, and

improves recall through memory-based retrieval, ensuring precise and efficient localization of software defects.

The overall flow diagram is shown in Figure 1.

Figure 1: Block Diagram of Fault Localization in Software Testing Using SqueezeBERT, Wavelet CNN, and

AMN

4.1. Data Collection

The Defects4J dataset is used for fault localization in software testing. It contains real-world Java software

defects from multiple open-source projects, including execution logs, stack traces, and failure reports. Each

defect is linked to its corresponding bug-fixing commit, providing ground-truth fault locations. The dataset

enables the training and evaluation of fault localization models by offering diverse failure scenarios and

software versions, ensuring robust generalization across different codebases and execution environments.

Dataset link: https://github.com/rjust/defects4j

4.2. Data Preprocessing

This section presents the mathematical formulation of each stage in the proposed fault localization method,

ensuring clarity in processing, feature extraction, and evaluation.

4.2.1. Log Parsing & Tokenization (for SqueezeBERT)

Converts raw execution logs into structured token sequences. Tokenizes each log entry into subword

representations for transformer-based processing as mathematically shown in Equation (1). 𝑆 = 𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑟 (𝑙𝑜𝑔𝑖) (1)

where 𝑆 is the tokenized sequence of 𝑙𝑜𝑔 𝑙𝑜𝑔𝑖.
4.2.2. Feature Extraction (for Wavelet CNN)

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 04, Apr, 2024

ISSN No: 2250-3676 www.ijesat.com Page 257 of 265

https://github.com/rjust/defects4j

Transforms log data into frequency-domain representations to capture fault patterns. Uses a Discrete Wavelet

Transform (DWT) to extract time-frequency features as mathematically shown in Equation (2). 𝑊 = 𝐷𝑊𝑇(𝑙𝑜𝑔𝑖) (2)

where 𝑊 represents the wavelet-transformed 𝑙𝑜𝑔 𝑙𝑜𝑔𝑖.
4.2.3. Memory Storage & Retrieval (for AMN)

Stores past fault patterns and retrieves similar occurrences to enhance fault localization. Uses an attention

mechanism to fetch similar fault embeddings from memory as mathematically shown in Equation (3). 𝐴 = ∑𝑁𝑖=1  𝛼𝑖𝑀𝑖 (3)

where 𝐴 is the retrieved memory output, 𝑀𝑖 are stored fault patterns, and 𝛼𝑖 are attention weights.

4.3. Fault Classification using SqueezeBERT + Wavelet CNN + AMN

Identifies fault locations using learned feature representations. Combines extracted features and memory-

retrieved patterns to classify faults as mathematically shown in Equation (4). 𝑌ˆ = 𝜎(𝑊𝑓(𝐹𝑠 + 𝐹𝑤 + 𝐴) + 𝑏𝑓) (4)

where 𝑌ˆ is the predicted fault location, 𝐹𝑠 is the SqueezeBERT output, 𝐹𝑤 is the Wavelet CNN output, 𝐴 is the

AMN memory output, and 𝑊𝑓 , 𝑏𝑓 are learnable parameters.

4.4. Evaluation Metrics for Fault Localization

4.4.1 Fault Localization Accuracy (%)

Measures correctness of localized faults as mathematically shown in Equation (5). 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∣ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑𝐹𝑎𝑢𝑙𝑡𝑠 ∣∣ 𝑇𝑜𝑡𝑎𝑙𝐹𝑎𝑢𝑙𝑡𝑠 ∣ × 100 (5)

4.4.2 Fault Detection Rate (FDR) (%)

Assesses how effectively the model detects faults as mathematically shown in Equation (6). 𝐹𝐷𝑅 = ∣ 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐹𝑎𝑢𝑙𝑡𝑠 ∣∣ 𝑇𝑜𝑡𝑎𝑙𝐾𝑛𝑜𝑤𝑛𝐹𝑎𝑢𝑙𝑡𝑠 ∣ × 100 (6)

4.4.3 Mean Time to Fault Detection (MTTD) (seconds)

The time taken to identify faults after execution is measured as mathematically shown in Equation (7). 𝑀𝑇𝑇𝐷 = ∑𝑁𝑖=1   𝑇𝑑𝑒𝑡𝑒𝑐𝑡 ,𝑖𝑁 (7)

4.4.4 False Positive Rate (FPR) (%)

Determines how often non-faulty logs are misclassified as mathematically shown in Equation (8). 𝐹𝑃𝑅 = ∣ 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 ∣∣ 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 ∣ × 100 (8)

4.4.5 F1-Score (%)

Balances precision and recall for fault localization as mathematically shown in Equation (9). 𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (9)

where Precision = 𝑇𝑃𝑇𝑃+𝐹𝑃 and Recall = 𝑇𝑃𝑇𝑃+𝐹𝑁.

5. Results

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 04, Apr, 2024

ISSN No: 2250-3676 www.ijesat.com Page 258 of 265

This section comprehensively evaluates the proposed SqueezeBERT + Wavelet CNN + AMN model for fault

localization using the Defects4J dataset. The results assess fault detection accuracy, false positive rate, recall,

and localization efficiency. Comparative analysis against baseline methods highlights the model’s performance

advantages. Each metric is visualized using appropriate figures, demonstrating improvements in precision,

detection speed, and overall fault localization effectiveness.

Fault localization accuracy measures the model’s ability to correctly identify faulty code regions. Higher

accuracy indicates precise fault detection, reducing debugging effort. Traditional approaches often struggle with

noisy log data, leading to misidentifications. The comparison of the fault localization accuracy of the proposed

model against baseline methods, as shown in Figure 2, demonstrates its superior fault identification capability.

Figure 2: Fault Localization Accuracy of Different Methods

FDR evaluates the proportion of known faults correctly detected by the model. A high FDR ensures minimal

undetected bugs, improving software reliability. Conventional methods often suffer from low recall due to

ineffective feature extraction. The fault detection rate across different models is presented in Figure 3,

showcasing the improved recall of the proposed method using AMN for historical pattern retrieval.

Figure 3: Fault Detection Rate Comparison

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 04, Apr, 2024

ISSN No: 2250-3676 www.ijesat.com Page 259 of 265

MTTD measures how quickly a fault is detected after log analysis. Faster detection reduces debugging time,

aiding rapid software maintenance. Traditional approaches, particularly static analysis-based methods, are

computationally expensive, leading to delays. The average time taken by different methods to detect faults as

shown in Figure 4, highlights the efficiency of the model in fault localization.

Figure 4: Mean Time to Fault Detection (MTTD) Comparison

FPR quantifies the proportion of non-faulty logs misclassified as faults. A low FPR ensures minimal debugging

effort wasted on false alarms. Many existing methods struggle with high FPR due to poor log parsing and

feature extraction. The false positive rates, as shown in Figure 5, demonstrate the proposed model’s ability to

reduce incorrect fault predictions while maintaining high recall.

Figure 5: False Positive Rate of Different Methods

To evaluate the effectiveness of the proposed SqueezeBERT + Wavelet CNN + AMN model, we compare its

performance against Advanced Genetic Algorithms (AGA) across key software testing metrics is shown in

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 04, Apr, 2024

ISSN No: 2250-3676 www.ijesat.com Page 260 of 265

Table 1. While AGA has demonstrated improvements over traditional methods, it still faces limitations in

computational efficiency and adaptability. The proposed method enhances fault localization accuracy, error

reduction, and execution time efficiency, ensuring higher scalability and lower computational overhead. The

following table presents a detailed comparison of both approaches, highlighting the superior performance of the

proposed method in optimizing software testing processes.

Table 1: Performance Metrics Comparison

Metric AGA Method Proposed Method

Test Coverage (%) 90 95

Efficiency (%) 85 92

Testing Reliability (%) 95 97

Computational Overhead (%) 70 60

Fault Localization Accuracy (%) -- 98

Error Reduction (%) -- 93

Execution Time Reduction (%) -- 88

Scalability (%) -- 90

6. Conclusion and Future Works

The proposed SqueezeBERT + Wavelet CNN + Adaptive Memory Network (AMN) model demonstrates

substantial advancements in software fault localization by delivering 98% localization accuracy, 93% error

reduction, and 88% reduction in execution time. When benchmarked against Advanced Genetic Algorithms

(AGA), the model exhibits superior efficiency (92% vs. 85%), better scalability, and lower computational

overhead (60% vs. 70%). These results affirm the model’s robustness and reliability in accelerating the

debugging process, enhancing both performance and precision in software testing workflows. The integration of

wavelet-transformed features and adaptive memory mechanisms significantly contributes to the model’s ability

to capture complex fault patterns and long-term dependencies. Overall, the model provides a practical, high-

performance solution that can be deployed effectively in both centralized and distributed software environments.

Future research will aim to extend the model’s adaptability to a wider range of software architectures, enabling

seamless integration in heterogeneous and large-scale systems. Additionally, incorporating reinforcement

learning techniques will be explored to enable dynamic, real-time fault localization in continuously evolving

codebases. Another direction includes optimizing the model for edge environments and low-resource systems to

ensure broader applicability. Efforts will also be made to enhance explainability and transparency, enabling

developers to better understand fault predictions and take corrective actions with confidence.

References

[1] Gupta, N., Sharma, A., & Pachariya, M. K. (2022). Multi-objective test suite optimization for detection

and localization of software faults. Journal of King Saud University-Computer and Information

Sciences, 34(6), 2897-2909.

[2] Akhil, R.G.Y. (2021). Improving Cloud Computing Data Security with the RSA Algorithm. International

Journal of Information Technology & Computer Engineering, 9(2), ISSN 2347–3657.

[3] Zhang, Z., Lei, Y., Mao, X., Yan, M., Xia, X., & Lo, D. (2023). Context-aware neural fault

localization. IEEE Transactions on Software Engineering, 49(7), 3939-3954.

[4] Rajeswaran, A. (2023). An Authorized Public Auditing Scheme for Dynamic Big Data Storage in

Platform as a Service. International Journal of HRM and Organization Behavior, 11(4), 37-51.

[5] Wen, M., Chen, J., Tian, Y., Wu, R., Hao, D., Han, S., & Cheung, S. C. (2019). Historical spectrum

based fault localization. IEEE Transactions on Software Engineering, 47(11), 2348-2368.

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 04, Apr, 2024

ISSN No: 2250-3676 www.ijesat.com Page 261 of 265

[6] Mohan, R.S. (2023). Cloud-Based Customer Relationship Management: Driving Business Success in the

E-Business Environment. International Journal of Marketing Management, 11(2), 58-72.

[7] Heiden, S., Grunske, L., Kehrer, T., Keller, F., Van Hoorn, A., Filieri, A., & Lo, D. (2019). An

evaluation of pure spectrum‐based fault localization techniques for large‐scale software
systems. Software: Practice and Experience, 49(8), 1197-1224.

[8] Karthikeyan, P. (2023). Enhancing Banking Fraud Detection with Neural Networks Using the Harmony

Search Algorithm. International Journal of Management Research and Business Strategy, 13(2), 34-47.

[9] Zhang, Z., Lei, Y., Mao, X., Yan, M., Xu, L., & Wen, J. (2021). Improving deep‐learning‐based fault
localization with resampling. Journal of Software: Evolution and Process, 33(3), e2312.

[10] Naresh, K.R.P. (2023). Forecasting E-Commerce Trends: Utilizing Linear Regression, Polynomial

Regression, Random Forest, and Gradient Boosting for Accurate Sales and Demand Prediction.

International Journal of HRM and Organizational Behavior, 11(3), 11-26.

[11] Widyasari, R., Prana, G. A. A., Haryono, S. A., Wang, S., & Lo, D. (2022). Real world projects, real

faults: evaluating spectrum based fault localization techniques on Python projects. Empirical Software

Engineering, 27(6), 147.

[12] Poovendran, A. (2023). AI-Powered Data Processing for Advanced Case Investigation Technology.

Journal of Science and Technology, 8(08), ISSN: 2456-5660.

[13] Dutta, A., Manral, R., Mitra, P., & Mall, R. (2019). Hierarchically localizing software faults using

DNN. IEEE Transactions on Reliability, 69(4), 1267-1292.

[14] Sitaraman, S. R. (2023). AI-DRIVEN VALUE FORMATION IN HEALTHCARE: LEVERAGING

THE TURKISH NATIONAL AI STRATEGY AND AI COGNITIVE EMPATHY SCALE TO BOOST

MARKET PERFORMANCE AND PATIENT ENGAGEMENT. International Journal of Information

Technology and Computer Engineering, 11(3), 103-116.

[15] Lei, Y., Xie, H., Zhang, T., Yan, M., Xu, Z., & Sun, C. (2022). Feature-fl: Feature-based fault

localization. IEEE Transactions on Reliability, 71(1), 264-283.

[16] Bobba, J. (2023). Cloud-Based Financial Models: Advancing Sustainable Development in Smart Cities.

International Journal of HRM and Organizational Behavior, 11(3), 27-43.

[17] Kumar, S. (2023). Reviewing software testing models and optimization techniques: an analysis of

efficiency and advancement needs. Journal of Computers, Mechanical and Management, 2(1), 32-46.

[18] Kodadi, S. (2023). Integrating blockchain with database management systems for secure accounting in

the financial and banking sectors. Journal of Science and Technology, 8(9).

[19] Jamei, M., Ramakrishna, R., Tesfay, T., Gentz, R., Roberts, C., Scaglione, A., & Peisert, S. (2019).

Phasor measurement units optimal placement and performance limits for fault localization. IEEE Journal

on Selected Areas in Communications, 38(1), 180-192.

[20] Kadiyala, B., Alavilli, S. K., Nippatla, R. P., Boyapati, S., & Vasamsetty, C. (2023). Integrating

multivariate quadratic cryptography with affinity propagation for secure document clustering in IoT data

sharing. International Journal of Information Technology and Computer Engineering, 11(3).

[21] Mahdieh, M., Mirian-Hosseinabadi, S. H., & Mahdieh, M. (2022). Test case prioritization using test case

diversification and fault-proneness estimations. Automated Software Engineering, 29(2), 50.

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 04, Apr, 2024

ISSN No: 2250-3676 www.ijesat.com Page 262 of 265

[22] Valivarthi, D. T., Peddi, S., Narla, S., Kethu, S. S., & Natarajan, D. R. (2023). Fog computing-based

optimized and secured IoT data sharing using CMA-ES and firefly algorithm with DAG protocols and

federated Byzantine agreement. International Journal of Engineering & Science Research, 13(1), 117–
132.

[23] Benton, S., Li, X., Lou, Y., & Zhang, L. (2021). Evaluating and improving unified debugging. IEEE

Transactions on Software Engineering, 48(11), 4692-4716.

[24] Jadon, R., Srinivasan, K., Chauhan, G. S., & Budda, R. (2023). Optimizing software AI systems with

asynchronous advantage actor-critic, trust-region policy optimization, and learning in partially

observable Markov decision processes. ISAR - International Journal of Research in Engineering

Technology, 8(2).

[25] Sodin, D., Rudež, U., Mihelin, M., Smolnikar, M., & Čampa, A. (2021). Advanced edge-cloud

computing framework for automated pmu-based fault localization in distribution networks. Applied

sciences, 11(7), 3100.

[26] Yallamelli, A. R. G., Ganesan, T., Devarajan, M. V., Mamidala, V., Yalla, R. M. K., & Sambas, A.

(2023). AI and Blockchain in Predictive Healthcare: Transforming Insurance, Billing, and Security Using

Smart Contracts and Cryptography. International Journal of Information Technology and Computer

Engineering, 11(2), 46-61.

[27] Liang, R., Liu, F., & Liu, J. (2020). A belief network reasoning framework for fault localization in

communication networks. Sensors, 20(23), 6950.

[28] Gudivaka, R. L., Gudivaka, B. R., Gudivaka, R. K., Basani, D. K. R., Grandhi, S. H., Murugesan, S., &

Kamruzzaman, M. M. (2023). Blockchain-powered smart contracts and federated AI for secure data

sharing and automated compliance in transparent supply chains. International Journal of Management

Research & Review, 13(4), 34–49.

[29] Afzal, A., Motwani, M., Stolee, K. T., Brun, Y., & Le Goues, C. (2019). SOSRepair: Expressive

semantic search for real-world program repair. IEEE Transactions on Software Engineering, 47(10),

2162-2181.

[30] Deevi, D. P., Allur, N. S., Dondapati, K., Chetlapalli, H., Kodadi, S., & Perumal, T. (2023). Efficient and

secure mobile data encryption in cloud computing: ECC, AES, and blockchain solutions. International

Journal of Engineering Research and Science & Technology, 19(2).

[31] Abdel-Salam, S., & Rafea, A. (2022). Performance study on extractive text summarization using BERT

models. Information, 13(2), 67.

[32] Garikipati, V., Ubagaram, C., Dyavani, N. R., Jayaprakasam, B. S., & Hemnath, R. (2023). Hybrid AI

models and sustainable machine learning for eco-friendly logistics, carbon footprint reduction, and green

supply chain optimization. Journal of Science and Technology, 8(12), 230–255.

[33] Ain, Q. U., Chatti, M. A., Bakar, K. G. C., Joarder, S., & Alatrash, R. (2023). Automatic construction of

educational knowledge graphs: a word embedding-based approach. Information, 14(10), 526.

[34] Pulakhandam, W., & Pushpakumar, R. (2019). AI-driven hybrid deep learning models for seamless

integration of cloud computing in healthcare systems. International Journal of Applied Science

Engineering and Management, 13(1).

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 04, Apr, 2024

ISSN No: 2250-3676 www.ijesat.com Page 263 of 265

[35] Guesmi, M., Chatti, M. A., Kadhim, L., Joarder, S., & Ain, Q. U. (2023). Semantic interest modeling and

content-based scientific publication recommendation using word embeddings and sentence

encoders. Multimodal Technologies and Interaction, 7(9), 91.

[36] Vallu, V. R., & Arulkumaran, G. (2019). Enhancing compliance and security in cloud-based healthcare:

A regulatory perspective using blockchain and RSA encryption. Journal of Current Science, 7(4).

[37] Fiok, K., Karwowski, W., Gutierrez, E., Davahli, M. R., Wilamowski, M., & Ahram, T. (2021).

Revisiting text guide, a truncation method for long text classification. Applied Sciences, 11(18), 8554.

[38] Ganesan, S., & Mekala, R. (2019). AI-driven drug discovery and personalized treatment using cloud

computing. International Journal of Applied Science Engineering and Management, 13(3).

[39] Pourmirzaei, M., Ramazi, S., Esmaili, F., Shojaeilangari, S., & Allahvardi, A. (2023). Machine learning-

based approaches for ubiquitination site prediction in human proteins. BMC bioinformatics, 24(1), 449.

[40] Musam, V. S., & Rathna, S. (2019). Firefly-optimized cloud-enabled federated graph neural networks for

privacy-preserving financial fraud detection. International Journal of Information Technology and

Computer Engineering, 7(4).

[41] Liapis, C. M., & Kotsiantis, S. (2023). Temporal convolutional networks and BERT-based multi-label

emotion analysis for financial forecasting. Information, 14(11), 596.

[42] Musham, N. K., & Aiswarya, R. S. (2019). Leveraging artificial intelligence for fraud detection and risk

management in cloud-based e-commerce platforms. International Journal of Engineering Technology

Research & Management, 3(10)

[43] Yan, M., Chen, C., Du, J., Peng, X., Zhou, J. T., & Zeng, Z. (2021). Memory-assistant collaborative

language understanding for artificial intelligence of things. IEEE Transactions on Industrial

Informatics, 18(5), 3349-3357.

[44] Radhakrishnan, P., & Padmavathy, R. (2019). Machine learning-based fraud detection in cloud-powered

e-commerce transactions. International Journal of Engineering Technology Research & Management,

3(1).

[45] Zhao, X., Huang, P., & Shu, X. (2022). Wavelet-Attention CNN for image classification. Multimedia

Systems, 28(3), 915-924.

[46] Gattupalli, K., & Purandhar, N. (2019). Optimizing customer retention in CRM systems using AI-

powered deep learning models. International Journal of Multidisciplinary and Current Research, 7

(Sept/Oct 2019 issue).

[47] Mewada, H. (2023). 2D-wavelet encoded deep CNN for image-based ECG classification. Multimedia

Tools and Applications, 82(13), 20553-20569.

[48] Kushala, K., & Rathna, S. (2018). Enhancing privacy preservation in cloud-based healthcare data

processing using CNN-LSTM for secure and efficient processing. International Journal of Mechanical

Engineering and Computer Science, 6(2), 119–127.

[49] Yang, J., Zhao, Y. Q., Chan, J. C. W., & Xiao, L. (2019). A multi-scale wavelet 3D-CNN for

hyperspectral image super-resolution. Remote sensing, 11(13), 1557.

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 04, Apr, 2024

ISSN No: 2250-3676 www.ijesat.com Page 264 of 265

[50] Nagarajan, H., & Mekala, R. (2019). A secure and optimized framework for financial data processing

using LZ4 compression and quantum-safe encryption in cloud environments. Journal of Current Science,

7(1).

[51] Hsueh, Y. M., Ittangihal, V. R., Wu, W. B., Chang, H. C., & Kuo, C. C. (2019). Fault diagnosis system

for induction motors by CNN using empirical wavelet transform. Symmetry, 11(10), 1212.

[52] Gollavilli, V. S. B. H., & Arulkumaran, G. (2019). Advanced fraud detection and marketing analytics

using deep learning. Journal of Science & Technology, 4(3).

[53] Pu, Z., Yan, J., Chen, L., Li, Z., Tian, W., Tao, T., & Xin, K. (2023). A hybrid Wavelet-CNN-LSTM

deep learning model for short-term urban water demand forecasting. Frontiers of Environmental Science

& Engineering, 17(2), 22.

[54] Gollapalli, V. S. T., & Padmavathy, R. (2019). AI-driven intrusion detection system using autoencoders

and LSTM for enhanced network security. Journal of Science & Technology, 4(4).

[55] Song, M., Park, H., & Shin, K. S. (2019). Attention-based long short-term memory network using

sentiment lexicon embedding for aspect-level sentiment analysis in Korean. Information Processing &

Management, 56(3), 637-653.

[56] Mandala, R. R., & Hemnath, R. (2019). Optimizing fuzzy logic-based crop health monitoring in cloud-

enabled precision agriculture using particle swarm optimization. International Journal of Information

Technology and Computer Engineering, 7(3).

[57] Tan, Y., & Zhao, G. (2019). Transfer learning with long short-term memory network for state-of-health

prediction of lithium-ion batteries. IEEE Transactions on Industrial Electronics, 67(10), 8723-8731.

[58] Garikipati, V., & Pushpakumar, R. (2019). Integrating cloud computing with predictive AI models for

efficient fault detection in robotic software. International Journal of Engineering Science and Advanced

Technology (IJESAT), 19(5).

[59] Ta, V. D., Liu, C. M., & Tadesse, D. A. (2020). Portfolio optimization-based stock prediction using long-

short term memory network in quantitative trading. Applied Sciences, 10(2), 437.

[60] Ayyadurai, R., & Kurunthachalam, A. (2019). Enhancing financial security and fraud detection using AI.

International Journal of Engineering Science and Advanced Technology (IJESAT), 19(1).

[61] Punia, S., Nikolopoulos, K., Singh, S. P., Madaan, J. K., & Litsiou, K. (2020). Deep learning with long

short-term memory networks and random forests for demand forecasting in multi-channel

retail. International journal of production research, 58(16), 4964-4979.

[62] Yuan, X., Li, L., & Wang, Y. (2019). Nonlinear dynamic soft sensor modeling with supervised long

short-term memory network. IEEE transactions on industrial informatics, 16(5), 3168-3176.

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 24 Issue 04, Apr, 2024

ISSN No: 2250-3676 www.ijesat.com Page 265 of 265

